## Exercise 84

Under certain circumstances a rumor spreads according to the equation

$$
p(t)=\frac{1}{1+a e^{-k t}}
$$

where $p(t)$ is the proportion of the population that has heard the rumor at time $t$ and $a$ and $k$ are positive constants. [In Section 9.4 we will see that this is a reasonable equation for $p(t)$.]
(a) Find $\lim _{t \rightarrow \infty} p(t)$.
(b) Find the rate of spread of the rumor.
(c) Graph $p$ for the case $a=10, k=0.5$ with $t$ measured in hours. Use the graph to estimate how long it will take for $80 \%$ of the population to hear the rumor.

## Solution

Take the limit of $p(t)$ as $t \rightarrow \infty$.

$$
\lim _{t \rightarrow \infty} p(t)=\lim _{t \rightarrow \infty} \frac{1}{1+a e^{-k t}}=\frac{1}{1+a(0)}=1
$$

What this means is that everyone will have heard the rumor after a really long time.
The rate of spread of the rumor is given by the derivative of $p(t)$.

$$
\begin{aligned}
p^{\prime}(t) & =\frac{d p}{d t} \\
& =\frac{d}{d t}\left(\frac{1}{1+a e^{-k t}}\right) \\
& =\frac{\left[\frac{d}{d t}(1)\right]\left(1+a e^{-k t}\right)-\left[\frac{d}{d t}\left(1+a e^{-k t}\right)\right](1)}{\left(1+a e^{-k t}\right)^{2}} \\
& =\frac{(0)\left(1+a e^{-k t}\right)-\left[a \frac{d}{d t}\left(e^{-k t}\right)\right]}{\left(1+a e^{-k t}\right)^{2}} \\
& =\frac{-\left[a\left(e^{-k t}\right) \cdot \frac{d}{d t}(-k t)\right]}{\left(1+a e^{-k t}\right)^{2}} \\
& =\frac{-\left[a\left(e^{-k t}\right) \cdot(-k)\right]}{\left(1+a e^{-k t}\right)^{2}} \\
& =\frac{k a e^{-k t}}{\left(1+a e^{-k t}\right)^{2}}
\end{aligned}
$$

To find how long it will take for $80 \%$ of the population to hear the rumor, set $p(t)=0.8$ and solve for $t$.

$$
\begin{gathered}
0.8=\frac{1}{1+a e^{-k t}} \\
0.8\left(1+a e^{-k t}\right)=1
\end{gathered}
$$

Divide both sides by 0.8 .

$$
1+a e^{-k t}=\frac{1}{0.8}
$$

Subtract both sides by 1 .

$$
a e^{-k t}=\frac{1}{0.8}-1=\frac{1}{4}
$$

Divide both sides by $a$.

$$
e^{-k t}=\frac{1}{4 a}
$$

Take the natural logarithm of both sides.

$$
\begin{aligned}
\ln e^{-k t} & =\ln \frac{1}{4 a} \\
-k t \ln e & =\ln \frac{1}{4 a}
\end{aligned}
$$

Solve for $t$.

$$
t=-\frac{1}{k} \ln \frac{1}{4 a}=\frac{1}{k} \ln 4 a
$$

Assuming $a=10$ and $k=0.5$,

$$
t=\frac{1}{0.5} \ln 40 \approx 7.38 \text { hours. }
$$

The plot of $p(t)$ versus $t$ below confirms this result.


